Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biomedicines ; 12(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38540205

RESUMEN

Cellular senescence, a state of irreversible growth arrest, is implicated in various age-related pathologies, including skin aging. In this study, we investigated the role of CLCA2, a calcium-activated chloride channel accessory protein, in cellular senescence and its implications for skin aging. Utilizing UVB and Nutlin3a-induced senescence models, we observed the upregulation of CLCA2 at both transcriptomic and proteomic levels, suggesting its involvement in senescence pathways. Further analysis revealed that the depletion of CLCA2 led to accelerated senescence onset, characterized by classic senescence markers and a unique secretome profile. In 3D skin equivalent models, SEs constructed with CLCA2 knockdown fibroblasts exhibited features reminiscent of aged skin, underscoring the importance of CLCA2 in maintaining skin homeostasis. Our findings highlight CLCA2 as a novel regulator of cellular senescence and its potential implications for skin aging mechanisms.

2.
Oncogene ; 43(4): 235-247, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38017134

RESUMEN

Despite significant therapeutic advances in recent years, treatment of metastatic prostate cancer (PCa) remains palliative, owing to the inevitable occurrence of drug resistance. There is increasing evidence that epithelial glucocorticoid receptor (GR) signaling and changes in the tumor-microenvironment (TME) play important roles in this process. Since glucocorticoids (GCs) are used as concomitant medications in the course of PCa treatment, it is essential to investigate the impact of GCs on stromal GR signaling in the TME. Therefore, general GR mRNA and protein expression was assessed in radical prostatectomy specimens and metastatic lesions. Elevated stromal GR signaling after GC treatment resulted in altered GR-target gene, soluble protein expression, and in a morphology change of immortalized and primary isolated cancer-associated fibroblasts (CAFs). Subsequently, these changes affected proliferation, colony formation, and 3D-spheroid growth of multiple epithelial PCa cell models. Altered expression of extra-cellular matrix (ECM) and adhesion-related proteins led to an ECM remodeling. Notably, androgen receptor pathway inhibitor treatments did not affect CAF viability. Our findings demonstrate that GC-mediated elevated GR signaling has a major impact on the CAF secretome and the ECM architecture. GC-treated fibroblasts significantly influence epithelial tumor cell growth and must be considered in future therapeutic strategies.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias de la Próstata , Masculino , Humanos , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Glucocorticoides/metabolismo , Próstata/patología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Fibroblastos/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo
3.
Inflamm Regen ; 43(1): 53, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904253

RESUMEN

BACKGROUND: Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment. METHODS: We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR. RESULTS: CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs. CONCLUSION: Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.

4.
J Virol ; 97(6): e0037023, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37219458

RESUMEN

DNA replication of E1-deleted first-generation adenoviruses (AdV) in cultured cancer cells has been reported repeatedly and it was suggested that certain cellular proteins could functionally compensate for E1A, leading to the expression of the early region 2 (E2)-encoded proteins and subsequently virus replication. Referring to this, the observation was named E1A-like activity. In this study, we investigated different cell cycle inhibitors with respect to their ability to increase viral DNA replication of dl70-3, an E1-deleted adenovirus. Our analyses of this issue revealed that in particular inhibition of cyclin-dependent kinases 4/6 (CDK4/6i) increased E1-independent adenovirus E2-expression and viral DNA replication. Detailed analysis of the E2-expression in dl70-3 infected cells by RT-qPCR showed that the increase in E2-expression originated from the E2-early promoter. Mutations of the two E2F-binding sites in the E2-early promoter (pE2early-LucM) caused a significant reduction in E2-early promoter activity in trans-activation assays. Accordingly, mutations of the E2F-binding sites in the E2-early promoter in a virus named dl70-3/E2Fm completely abolished CDK4/6i induced viral DNA replication. Thus, our data show that E2F-binding sites in the E2-early promoter are crucial for E1A independent adenoviral DNA replication of E1-deleted vectors in cancer cells. IMPORTANCE E1-deleted AdV vectors are considered replication deficient and are important tools for the study of virus biology, gene therapy, and large-scale vaccine development. However, deletion of the E1 genes does not completely abolish viral DNA replication in cancer cells. Here, we report, that the two E2F-binding sites in the adenoviral E2-early promoter contribute substantially to the so-called E1A-like activity in tumor cells. With this finding, on the one hand, the safety profile of viral vaccine vectors can be increased and, on the other hand, the oncolytic property for cancer therapy might be improved through targeted manipulation of the host cell.


Asunto(s)
Adenoviridae , Ciclo Celular , Replicación del ADN , Replicación Viral , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Células/efectos de los fármacos , Células/virología , Replicación del ADN/efectos de los fármacos , ADN Viral/metabolismo , Regulación Viral de la Expresión Génica/efectos de los fármacos , Mutación , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Replicación Viral/fisiología , Humanos
5.
Aging Cell ; 22(1): e13752, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36547021

RESUMEN

Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine also known as a mitokine; however, its role in mitochondrial homeostasis and cellular senescence remained elusive. We show here that knocking down GDF15 expression in human dermal fibroblasts induced mitochondrial dysfunction and premature senescence, associated with a distinct senescence-associated secretory phenotype. Fibroblast-specific loss of GDF15 expression in a model of 3D reconstructed human skin induced epidermal thinning, a hallmark of skin aging. Our results suggest GDF15 to play a so far undisclosed role in mitochondrial homeostasis to delay both the onset of cellular senescence and the appearance of age-related changes in a 3D human skin model.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Piel , Humanos , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Piel/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Senescencia Celular/genética
6.
Biofabrication ; 14(3)2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35333193

RESUMEN

Neuroblastoma is an extracranial solid tumor which develops in early childhood and still has a poor prognosis. One strategy to increase cure rates is the identification of patient-specific drug responses in tissue models that mimic the interaction between patient cancer cells and tumor environment. We therefore developed a perfused and micro-vascularized tumor-environment model that is directly bioprinted into custom-manufactured fluidic chips. A gelatin-methacrylate/fibrin-based matrix containing multiple cell types mimics the tumor-microenvironment that promotes spontaneous micro-vessel formation by embedded endothelial cells. We demonstrate that both, adipocyte- and iPSC-derived mesenchymal stem cells can guide this process. Bioprinted channels are coated with endothelial cells post printing to form a dense vessel-tissue barrier. The tissue model thereby mimics structure and function of human soft tissue with endothelial cell-coated larger vessels for perfusion and micro-vessel networks within the hydrogel-matrix. Patient-derived neuroblastoma spheroids are added to the matrix during the printing process and grown for more than two weeks. We demonstrate that micro-vessels are attracted by and grow into tumor spheroids and that neuroblastoma cells invade the tumor-environment as soon as the spheroids disrupt. In summary, we describe the first bioprinted, micro-vascularized neuroblastoma-tumor-environment model directly printed into fluidic chips and a novel medium-throughput biofabrication platform suitable for studying tumor angiogenesis and metastasis in precision medicine approaches in future.


Asunto(s)
Células Madre Mesenquimatosas , Neuroblastoma , Preescolar , Células Endoteliales , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Neuroblastoma/tratamiento farmacológico , Medicina de Precisión , Impresión Tridimensional , Ingeniería de Tejidos , Microambiente Tumoral
7.
JID Innov ; 1(3): 100033, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34909730

RESUMEN

Alterations of the lipid profile of the stratum corneum have an important role in the pathogenesis of atopic dermatitis (AD) because they contribute to epidermal barrier impairment. However, they have not previously been envisioned as a cellular response to altered metabolic requirements in AD epidermis. In this study, we report that the lipid composition in the epidermis of flaky tail, that is, ft/ft mice mimics that of human lesional AD (ADL) epidermis, both showing a shift toward shorter lipid species. The amounts of C24 and C26 free fatty acids and C24 and C26 ceramides-oxidized exclusively in peroxisomes-were reduced in the epidermis of ft/ft mice despite increased lipid synthesis, similar to that seen in human ADL edpidermis. Increased ACOX1 protein and activity in granular keratinocytes of ft/ft epidermis, altered lipid profile in human epidermal equivalents overexpressing ACOX1, and increased ACOX1 immunostaining in skin biopsies from patients with ADL suggest that peroxisomal ß-oxidation significantly contributes to lipid signature in ADL epidermis. Moreover, we show that increased anaerobic glycolysis in ft/ft mouse epidermis is essential for keratinocyte proliferation and adenosine triphosphate synthesis but does not contribute to local inflammation. Thus, this work evidenced a metabolic shift toward enhanced peroxisomal ß-oxidation and anaerobic glycolysis in ADL epidermis.

8.
Stem Cell Res Ther ; 12(1): 280, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971957

RESUMEN

BACKGROUND: Adipose-derived stem cells (ASC) and adipocytes are involved in numerous physiological and pathophysiological conditions, which have been extensively described in subcutaneous and visceral fat depots over the past two decades. However, much less is known about ASC and adipocytes outside classical fat tissue depots and their necessity in tissue remodeling after injury. Therefore, we investigated the etiology of adipocytes in human granulation tissue and define their possible role wound healing. METHODS: Identification of human wound tissue adipocytes was determined by immunohistochemical staining of granulation tissue sections from patients undergoing surgical debridement. Stromal cell fractions from granulation tissue and subcutaneous fat tissue were generated by collagenase type II-based protocols. Pro- and anti-inflammatory wound bed conditions were mimicked by THP1- and CD14+ monocyte-derived macrophage models in vitro. Effects of macrophage secretome on ASC differentiation and metabolism were determined by immunoblotting, flow cytometry, and microscopy assessing early and late adipocyte differentiation states. Functional rescuing experiments were conducted by lentiviral transduction of wildtype PPARG, IL1RA, and N-chlorotaurine (NCT) treatment. RESULTS: Single and clustered adipocyte populations were detected in 11 out of 13 granulation tissue specimens and single-cell suspensions from granulation tissue showed adipogenic differentiation potential. Pro-inflammatory signaling by IFNG/LPS-stimulated macrophages (M (IFNG/LPS)) inhibited the maturation of lipid droplets in differentiated ASC. In contrast, anti-inflammatory IL4/IL13-activated macrophages (M (IL4/IL13)) revealed minor effects on adipocyte development. The M (IFNG/LPS)-induced phenotype was associated with a switch from endogenous fatty acid synthesis to glycolysis-dominated cell metabolism and increased pro-inflammatory cytokine production. Impaired adipogenesis was associated with increased, but seemingly non-functional, CEBPB levels, which failed to induce downstream PPARG and CEBPA. Neither transgenic PPARG overexpression, nor inhibition of IL1B was sufficient to rescue the anti-adipogenic effects induced by IFNG/LPS-activated macrophages. Instead, macrophage co-treatment during stimulation with NCT, a mild oxidant produced by activated granulocytes present in human wounds in vivo, significantly attenuated the anti-adipogenic effects. CONCLUSIONS: In conclusion, the appearance of adipocytes in wound tissue indicates a prevailing anti-inflammatory environment that could be promoted by NCT treatment and may be associated with improved healing outcomes.


Asunto(s)
Adipogénesis , Oxidantes , Adipocitos , Diferenciación Celular , Humanos , Células Madre , Cicatrización de Heridas
9.
Front Cell Dev Biol ; 9: 664609, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928088

RESUMEN

p57 is a member of the Cip/Kip family of cell cycle inhibitors which restrict the eukaryotic cell cycle by binding to and inhibiting cyclin/CDK complexes. They are considered as tumor suppressors and inactivating genomic mutations of p57 are associated with human overgrowth disorders. Increasing evidence suggests that p57 controls additional cellular processes beyond cell cycle control such as apoptosis, cell migration or transcription. Here we report that p57 can stimulate AP-1 promotor activity. While transactivation by c-Jun is strongly activated by p57, it did not enhance c-Fos induced transcription. This indicates that c-Jun is the target of p57 in the canonical AP-1 heterodimeric transcription factor. We could detect endogenous p57/c-Jun containing complexes in cells by co-immunoprecipitation. The strong stimulation of c-Jun activity is not the consequence of activating phosphorylation in the transactivation domain (TAD) of c-Jun, but rather due to negative interference with c-Jun repressors and positive interference with c-Jun activators. In contrast to full-length p57, the amino- and carboxy-terminal domains of p57 are insufficient for a significant activation of c-Jun induced transcription. When expressed in presence of full length p57, the p57 C-terminus abrogated and the N-terminus enhanced c-Jun activation. This indicates that the C-terminus may bind and sequester a putative activator of c-Jun, whereas the N-terminus may sequester a c-Jun repressor. Interestingly, the p57 aminoterminus is sufficient for binding to the two c-Jun repressors HDAC1 and HDAC3. These data are consistent with a model of c-Jun activation where p57 is a part of large nuclear remodeling/transcription complexes. p57 might stimulate transcription by inhibiting transcription repressor proteins like HDACs via its N-terminus and/or attracting transcription activators through its C-terminus. These data suggest that in addition to its role as a CDK inhibitor and tumor suppressor, p57 may also exert tumor promoting functions by activation of the proto-oncoprotein c-Jun.

10.
Oncogene ; 40(17): 3087-3100, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33795839

RESUMEN

Despite increasing options for treatment of castration-resistant prostate cancer, development of drug resistance is inevitable. The glucocorticoid receptor (GR) is a prime suspect for acquired therapy resistance, as prostate cancer (PCa) cells are able to increase GR signaling during anti-androgen therapy and thereby circumvent androgen receptor (AR)-blockade and cell death. As standard AR-directed therapies fail to block the GR and GR inhibitors might result in intolerable side effects, the identification of GR signature genes, which are better suited for a targeted approach, is of clinical importance. Therefore, the specific epithelial and stromal GR signature was determined in cancer-associated fibroblasts as well as in abiraterone and enzalutamide-resistant cells after glucocorticoid (GC) treatment. Microarray and ChIP analysis identified MAO-A as a directly up-regulated mutual epithelial and stromal GR target, which is induced after GC treatment and during PCa progression. Elevated MAO-A levels were confirmed in in vitro cell models, in primary tissue cultures after GC treatment, and in patients after neoadjuvant chemotherapy with GCs. MAO-A expression correlates with GR/AR activity as well as with a reduced progression-free survival. Pharmacological MAO-A inhibition combined with 2nd generation AR signaling inhibitors or chemotherapeutics results in impaired growth of androgen-dependent, androgen-independent, and long-term anti-androgen-treated cells. In summary, these findings demonstrate that targeting MAO-A represents an innovative therapeutic strategy to synergistically block GR and AR dependent PCa cell growth and thereby overcome therapy resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores de Glucocorticoides , Antagonistas de Receptores Androgénicos , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Receptores Androgénicos
11.
Adipocyte ; 9(1): 626-635, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33070670

RESUMEN

The CRISPR/Cas9 system is a powerful tool to generate a specific loss-of-function phenotype by gene knockout (KO). However, this approach is challenging in primary human cells. In this technical report, we present a reliable protocol to achieve a functional KO in the genome of human adipose stem/progenitor cells (ASCs). Using Sprouty1 (SPRY1) as a model target gene for a CRISPR/Cas9 mediated KO, we particularize the procedure including the selection of the CRISPR/Cas9 target sequences and the employment of appropriate lentiviral vectors to obtain a functional gene KO. The efficiency of CRISPR/Cas9 to mutate the SPRY1 gene is determined by a PCR-based mutation detection assay and sequence analysis. Effects on mRNA and protein levels are studied by RT-qPCR and Western blotting. In addition, we demonstrate that CRISPR/Cas9 mediated SPRY1 KO and gene silencing by shRNA are similarly effective to deplete the Sprouty1 protein and to inhibit adipogenic differentiation. In summary, we show a reliable approach to achieve a gene KO in human ASCs, which could also apply to other primary cell types. Abbreviations: ASC: Adipogenic Stem/Progenitor Cell; Cas: CRISPR-associated system; CRISPR: Clustered Regularly Interspaced Palindromic Repeat; gDNA: Genomic DNA; GOI: Gene of interest; gRNA: Guide RNA; NHEJ: Non-homologous end joining; Indel: Insertion/Deletion; PAM: Protospacer adjacent motif; sWAT: Subcutaneous white adipose tissue; TIDE: Tracking of indels by decomposition.


Asunto(s)
Tejido Adiposo/citología , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , Células Madre/metabolismo , Biomarcadores , Diferenciación Celular/genética , Línea Celular , Genes Reporteros , Vectores Genéticos/genética , Humanos , Mutación , ARN Interferente Pequeño/genética
12.
Mech Ageing Dev ; 190: 111318, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32710895

RESUMEN

Accumulation of senescent cells promotes the development of age-related pathologies and deterioration. In human skin, senescent cells potentially impair structure and function by secreting a mixture of signaling molecules and proteases that influence neighboring cells and degrade extracellular matrix components, such as elastin and collagen. One of the key underlying mechanisms of senescence and extrinsic skin aging is the increase of intracellular reactive oxygen species and resulting oxidative stress. Tert-butyl hydroperoxide (tBHP) is a known inducer of oxidative stress and cellular damage, acting at least in part by depleting the antioxidant glutathione. Here, we provide a detailed characterization of tBHP-induced senescence in human dermal fibroblasts in monolayer culture. In addition, results obtained with more physiological experimental models revealed that tBHP treated 3D reconstructed skin and ex vivo skin developed signs of chronic tissue damage, displaying reduced epidermal thickness and collagen fiber thinning. We, therefore, propose that tBHP treatment can be used as a model to study the effects of extrinsic skin aging, focusing mainly on the influence of environmental pollution.


Asunto(s)
Contaminación Ambiental , Fibroblastos , Glutatión/metabolismo , Envejecimiento de la Piel , Piel , terc-Butilhidroperóxido/metabolismo , Antioxidantes/metabolismo , Células Cultivadas , Senescencia Celular , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/análisis , Epidermis/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/fisiología , Humanos , Modelos Teóricos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Piel/patología , Envejecimiento de la Piel/patología , Envejecimiento de la Piel/fisiología
13.
Cell Commun Signal ; 18(1): 11, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980029

RESUMEN

BACKGROUND: Androgen receptor targeted therapies have emerged as an effective tool to manage advanced prostate cancer (PCa). Nevertheless, frequent occurrence of therapy resistance represents a major challenge in the clinical management of patients, also because the molecular mechanisms behind therapy resistance are not yet fully understood. In the present study, we therefore aimed to identify novel targets to intervene with therapy resistance using gene expression analysis of PCa co-culture spheroids where PCa cells are grown in the presence of cancer-associated fibroblasts (CAFs) and which have been previously shown to be a reliable model for antiandrogen resistance. METHODS: Gene expression changes of co-culture spheroids (LNCaP and DuCaP seeded together with CAFs) were identified by Illumina microarray profiling. Real-time PCR, Western blotting, immunohistochemistry and cell viability assays in 2D and 3D culture were performed to validate the expression of selected targets in vitro and in vivo. Cytokine profiling was conducted to analyze CAF-conditioned medium. RESULTS: Gene expression analysis of co-culture spheroids revealed that CAFs induced a significant upregulation of cholesterol and steroid biosynthesis pathways in PCa cells. Cytokine profiling revealed high amounts of pro-inflammatory, pro-migratory and pro-angiogenic factors in the CAF supernatant. In particular, two genes, 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (HMGCS2) and aldo-keto reductase family 1 member C3 (AKR1C3), were significantly upregulated in PCa cells upon co-culture with CAFs. Both enzymes were also significantly increased in human PCa compared to benign tissue with AKR1C3 expression even being associated with Gleason score and metastatic status. Inhibiting HMGCS2 and AKR1C3 resulted in significant growth retardation of co-culture spheroids as well as of various castration and enzalutamide resistant cell lines in 2D and 3D culture, underscoring their putative role in PCa. Importantly, dual targeting of cholesterol and steroid biosynthesis with simvastatin, a commonly prescribed cholesterol synthesis inhibitor, and an inhibitor against AKR1C3 had the strongest growth inhibitory effect. CONCLUSIONS: From our results we conclude that CAFs induce an upregulation of cholesterol and steroid biosynthesis in PCa cells, driving them into AR targeted therapy resistance. Blocking both pathways with simvastatin and an AKR1C3 inhibitor may therefore be a promising approach to overcome resistances to AR targeted therapies in PCa. Video abstract.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Colesterol/biosíntesis , Progresión de la Enfermedad , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Regulación hacia Arriba , Anciano , Benzamidas/farmacología , Vías Biosintéticas/genética , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Medios de Cultivo Condicionados/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Anotación de Secuencia Molecular , Nitrilos/farmacología , Fenotipo , Feniltiohidantoína/farmacología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Simvastatina/farmacología , Esferoides Celulares/metabolismo , Esferoides Celulares/patología
14.
Int Wound J ; 16(6): 1545-1552, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31606947

RESUMEN

Body contouring surgery following massive weight loss is often prone to complications. Subcutaneous adipose tissue is a rich source of stromal vascular fraction (SVF) cells, and moreover it plays an important role in the pathophysiology of obesity, metabolic syndrome, and wound healing. In this retrospective, single-centred appraisal, complications are examined and correlated with individual SVF numbers in abdominal subcutaneous fat tissue. We analysed whether the weight loss method affected complications. Eighty seven massive weight loss patients undergoing body contouring surgery between 2010 and 2017 were included in the study. In total, 57 cases with at least one complication were recorded (65.5%). Maximum lifetime weight was 109.6 kg (range 48-184 kg). Half of the complications (50.8%) were minor complications without the need for surgical revision. The mean number of SVF found in the resected tissue was 714 997.63 cells/g fat tissue. We found no statistical difference in complication rates dependent on cell numbers. Smoking (P = .049) and a high BMI at the time point of surgery (P = .031) led to significantly more complications. Also, a high resection weight (P = .057) showed a tendency for impaired wound healing. However, there was no difference in complication rates following body contouring procedures attributable to the method of weight loss in this study.


Asunto(s)
Contorneado Corporal , Células del Estroma/citología , Grasa Subcutánea/citología , Adulto , Anciano , Cirugía Bariátrica , Contorneado Corporal/efectos adversos , Recuento de Células , Femenino , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias , Estudios Retrospectivos , Factores de Riesgo , Pérdida de Peso , Adulto Joven
15.
Gerontology ; 65(1): 45-56, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30165362

RESUMEN

BACKGROUND: Atherosclerosis is the leading cause of death worldwide. The disease development is by and large driven by old age and lifestyle factors, such as diet, physical activity, and smoking. In the present study, we have investigated the effect of exercise and diet on the development of atherosclerosis in young and aged mice. OBJECTIVE: This study aimed at comparing multiple age-dependent factors that may influence atherosclerosis in a transgenic mouse model. METHODS: Young (14 weeks) and aged (49-52 weeks) C57BL/6 wild-type (WT) and atherosclerosis-prone ApoE-/- mice were subjected to physical endurance exercise on a treadmill, with or without a high-fat diet. Five weeks later, the frequencies of regulatory T cells (TREGs) in lymph nodes were assessed by flow cytometry, plasmatic cytokines (interleukin [IL]-1ß, IL-6, IL-10, IL-17, interferon-γ, tumor necrosis factor-α, and transforming growth factor [TGF]-ß1) levels were determined by Luminex assay. Lipids (cholesterol and triglycerides) and anti-heat shock protein 60 (HSP60) autoantibodies were measured by ELISA. Aortic lesion sizes were assessed by en face imaging. Microarray analysis and qPCR of skeletal muscle gene expression were also performed. RESULTS: Exercise leads to a reduction of aortic lesions in young ApoE-/- and aged WT mice independent of diet. In most groups, this reduction was followed by an increased proportion of TREGs and TGF-ß1 levels. Moreover, gene expression analysis showed that exercise seems to affect the AMPK signaling pathway. In particular, PGC-1α1 mRNA was induced in aged WT mice, whereas it was reduced in young ApoE-/- mice. In addition, GSEA analysis showed a marked reduction in the insulin signaling pathway in aged ApoE-/- mice. CONCLUSION: Practicing endurance exercise seems to be enough for reducing early aortic lesion formation, independent of diet. However, this was only true in mice with smaller aortic lesions, since mice with large, advanced, complicated atherosclerotic plaques did not show any reduction in lesion size with exercise training.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Entrenamiento Aeróbico/métodos , Resistencia Física/fisiología , Transducción de Señal/fisiología , Animales , Aorta/patología , Apolipoproteínas E/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Aterosclerosis/terapia , Chaperonina 60/sangre , Colesterol/sangre , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/métodos , Interferón gamma , Interleucinas/sangre , Interleucinas/clasificación , Ratones , Ratones Noqueados , Ratones Transgénicos , Análisis por Micromatrices/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/sangre
16.
J Mol Cell Cardiol ; 126: 105-117, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472251

RESUMEN

Physiologically, following myocardial infarction (MI), retinoid levels elevate locally in the infarcted area. Whereas therapeutic systemic application of retinoids was shown to reduce the progression of ventricular dilatation and the onset of heart failure, the role of acute physiologically increased retinoids in the infarction zone is unknown to date. To reveal the role of local retinoids in the MI zone is the central aim of this study. Using human cell culture and co-culture models for hypoxia as well as various assays systems, lentivirus-based transgene expression, in silico molecular docking studies, and an MI model in rats, we analysed the impact of the retinoid all-trans retinoic acid (ATRA) on cell signalling, cell viability, tissue survival, heart function, and MI-induced death in rats. Based on our results, ATRA-mediated signalling does aggravate the MI phenotype (e.g. 2.5-fold increased mortality compared to control), whereas 5'-methoxyleoligin (5ML), a new agent which interferes with ATRA-signalling rescues the ATRA-dependent phenotype. On the molecular level, ATRA signalling causes induction of TXNIP, a potent inhibitor of the physiological antioxidant thioredoxin (TRX1) and sensitizes cells to necrotic cell death upon hypoxia. 5ML-mediated prevention of ATRA effects were shown to be based on the inhibition of cellular ATRA uptake by interference with the cholesterol (and retinol) binding motif of the transmembrane protein STRA6. 5ML-mediated inhibition of ATRA uptake led to a strong reduction of ATRA-dependent gene expression, reduced ROS formation, and protection from necrotic cell death. As 5ML exerted a cardioprotective effect, also independent of its inhibition of cellular ATRA uptake, the agent likely has another cardioprotective property, which may rely on the induction of TRX1 activity. In summary, this is the first study to show i) that local retinoids in the early MI zone may worsen disease outcome, ii) that inhibition of endothelial retinoid uptake using 5ML may constitute a novel treatment strategy, and iii) that targeting endothelial and myocardial retinoid uptake (e.g. via STRA6 inhibition) may constitute a novel treatment target in acute MI.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Retinoides/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Humanos , Lignanos/farmacología , Masculino , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
17.
Int J Mol Sci ; 19(5)2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738484

RESUMEN

Human abdominal subcutaneous adipose tissue consists of two individual layers—the superficial adipose tissue (SAT) and deep adipose tissue (DAT)—separated by the Scarpa’s fascia. The present study focuses on the analysis of morphological and immunological differences of primary adipocytes, adipose-derived stem cells (ASC), and tissue-infiltrating immune cells found in SAT and DAT. Adipocytes and stromal vascular fraction (SVF) cells were isolated from human SAT and DAT specimens and phenotypically characterized by in vitro assays. Ex vivo analysis of infiltrating immune cells was performed by flow cytometry. Primary adipocytes from SAT are larger in size but did not significantly differ in cytokine levels of LEPTIN, ADIPOQ, RBP4, CHEMERIN, DEFB1, VISFATIN, MCP1, or MSCF. ASC isolated from SAT proliferated faster and exhibited a higher differentiation potential than those isolated from DAT. Flow cytometry analysis indicated no specific differences in the relative numbers of ASC, epithelial progenitor cells (EPC), or CD3⁺ T-cells, but showed higher numbers of tissue-infiltrating macrophages in SAT compared to DAT. Our findings suggest that ASC isolated from SAT have a higher regenerative potential than DAT-ASC. Moreover, spatial proximity to skin microbiota might promote macrophage infiltration in SAT.


Asunto(s)
Obesidad/genética , Células Madre/metabolismo , Grasa Subcutánea Abdominal/metabolismo , Grasa Subcutánea/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Adiponectina/genética , Adiponectina/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leptina/genética , Leptina/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Obesidad/metabolismo , Obesidad/patología , Proteínas Plasmáticas de Unión al Retinol/genética , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Células Madre/patología , Grasa Subcutánea Abdominal/patología , beta-Defensinas/genética , beta-Defensinas/metabolismo
18.
PLoS One ; 13(2): e0192108, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29420643

RESUMEN

The most common complication of silicone breast implants is capsular contracture (massive scar formation around the implant). We postulate that capsular contracture is always a sequel to inflammatory processes, with both innate and adaptive immune mechanisms participating. In general, fibroblasts and macrophages have been used as cell types to evaluate in vitro the biocompatibility of breast implant surfaces. Moreover, also T cells have been found at the implant site at the initial stage of fibrous capsule formation. However, only few studies have addressed the influence of surfaces with different textures on T-cell responses. The aim of the present study was to investigate the immune response of human peripheral blood mononuclear cells (PBMC) to commercially available silicone breast implants in vitro. PBMC from healthy female blood donors were cultured on each silicone surface for 4 days. Proliferation and phenotype of cultured cells were assessed by flow cytometry. Cytokine levels were determined by multiplex and real-time assay. We found that silicone surfaces do not induce T-cell proliferation, nor do they extensively alter the proportion of T cell subsets (CD4, CD8, naïve, effector memory). Interestingly, cytokine profiling identified matrix specific differences, especially for IL-6 and TNF-α on certain surface topographies that could lead to increased fibrosis.


Asunto(s)
Implantes de Mama , Inmunofenotipificación , Geles de Silicona , Linfocitos T/inmunología , Proliferación Celular , Citocinas/sangre , Citometría de Flujo , Humanos , Técnicas In Vitro , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Clin Cancer Res ; 24(4): 927-938, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29158269

RESUMEN

Purpose: The major obstacle in the management of advanced prostate cancer is the occurrence of resistance to endocrine therapy. Although the androgen receptor (AR) has been linked to therapy failure, the underlying escape mechanisms have not been fully clarified. Being closely related to the AR, the glucocorticoid receptor (GR) has been suggested to play a role in enzalutamide and docetaxel resistance. Given that glucocorticoids are frequently applied to prostate cancer patients, it is essential to unravel the exact role of the GR in prostate cancer progression.Experimental Design: Assessment of GR expression and functional significance in tissues from 177 prostate cancer patients, including 14 lymph node metastases, as well as in several human prostate cancer models, including androgen-dependent, androgen-independent, and long-term antiandrogen-treated cell lines.Results: Although GR expression is reduced in primary prostate cancer tissue, it is restored in metastatic lesions. Relapse patients with high GR experience shortened progression-free survival. GR is significantly increased upon long-term abiraterone or enzalutamide treatment in the majority of preclinical models, thus identifying GR upregulation as an underlying mechanism for cells to bypass AR blockade. Importantly, GR inhibition by RNAi or chemical blockade results in impaired proliferation and 3D-spheroid formation in all tested cell lines.Conclusions: GR upregulation seems to be a common mechanism during antiandrogen treatment and supports the notion that targeting the GR pathway combined with antiandrogen medication may further improve prostate cancer therapy. Clin Cancer Res; 24(4); 927-38. ©2017 AACR.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Receptores de Glucocorticoides/genética , Antagonistas de Andrógenos/farmacología , Androstenos/farmacología , Benzamidas , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Glucocorticoides/farmacología , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Masculino , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...